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The statement and complete analytical solution of the one-dimensional 

self-similar problem of a strong point explosion in a gas is given by 

Sedov [ 1 I (see also [ 2 ] ). Here it was assumed that the initial density 

of the gas p, either is constant or depends on the geometrical coordinate 

r according to the following law: 

pl (r) = AT-~, 0, A - const, .4 > 0 (0.1) 

In addition, it was considered that the initial pressure p1 of the un- 

disturbed gas can be neglected in comparison with the pressure p2 at the 

shock wave front. It is known that the latter assumption is correct only 

for the initial stage of the explosion development, i.e. for a brief time 

interval. As the shock wave propagates the influence of the initial 

pressure becomes essential. Therefore, in the initial conditions of the 
problem there appears an additional dimensional parameter pl, by virtue 

of which the problem ceases to be self-similar and all non-dimensional 

characteristics of the flow will now depend not on one but on two vari- 

ables. The non self-similar problem can be solved by numerical integration 

of a system of nonlinear equations, and this has been done for the case of 

constant initial density [3 ] with the help of high-speed computing 

machines. 

However, a simpler means of solving the problem for values of (p2 - p,)/ 

p1 < 1 can be proposed, which is based on a linearization of the basic 

equations about the self-similar solution. For the problem of an explosion 

in a perfect gas with constant density and adiabatic exponent y = 1.4 
linearized solutions have been obtained previously [ 1,4,5 1. In those 

papers the linearized non-dimensional parameter is 9, which characterizes 

the intensity of the shock wave and is equal to the ratio of the square of 

the velocity of sound in the undisturbed gas to the square of the velocity 

of the shock wave: 
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q = q%-2 = 7p,p1-1c-* (0.2) 

In the present paper a solution of the linearized problem of an ex- 

plosion taking into account back pressure in a medium with varying initial 

density, which is determined by formula (0. l), will be considered. Using 

the method of linearization on the variable parameter q, equations which 

describe one-dimensional motions similar to the self-similar cases are 

derived. A first integral of the obtained system of linearized equations 

is found and an exact analytical solution of the problem is given for 

o=wl= 3~-2++-~) 
Y+l ’ 

(0.3) 

where v = 3 for spherical waves, v = 2 for cylindrical waves, and v = 1 

for plane waves. 

1. Statement of the problem and the basic equations. We 

shall take the initial system of equations of gas dynamics, which describe 

the one-dimensional adiaLatic disturbed motions of a perfect gas behind 

the shock wave front, in the form 

(1.1) 

For the solution of the problem of a point explosion it is required 
to find a solution of system (1.1) with the boundary conditions at the 
shock wave front: 

%=&(I-dc. pa= ’ T2;+12qP19 Pz= 2T(r:',,"q pr (1.2) 

@antities imnediately behind the shock wave front are denoted by the 

index 2. Let r,(t) be the radius of the shock wave. 'Ihen 

V, = v(r2, q, pz = ~(‘2, t), pz = p(r,, t), c = dr,/dt 

The dependence of v,(t), p,(t), p,(t), r,(t) on time is unknown before- 
hand, their determination being equivalent to the determination of the 

dependence of q(t). In addition to conditions (1.2), we also have the 

boundary condition for the velocity at the center of symmetry 

u (0, t) = 0 (1.3) 

At time t = 0 a finite energy E, is released at the center of symmetry 
and the initial conditions 
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2’ (r, 0) = 0, p(r, 0) = p1 (r) = h-m, p(r, 0) = p1 = con% r2(0) = 0 (1.4) 

are given. 

From the system which defines the parameters of this problem A, pl, 

E() t Yl 0, r, t it follows that the required non-dimensional functions 

f=V/C, g = p /'Pr, h= p,'pz (1.5) 

will depend on two non-dimensional variables, for which we take 

h= r/r2, q = a,? ,‘c2 

and on the constant parameters y and CU. 

Passing to the introduced non-dimensional variables and taking into 

account that 

a 1 a a c 

TF=<TK7 ( J- .&L a - j a 
al=<. ?drz aq 1 ’ ah, 

2 de 2 de d In c2 rz dq -- =_- = ~ = 
c? dt c drz drz ( 

(0) - - - 
Q de 1 

r2 

1 d lnp? = cl = _ _ 1 

( 
(,) L 2 dq --__ 

c clt dra ra 7 - 1 j 2q r2 dx, ) 

1 dlnp, d In PZ 27 dq 

--=drz=- 
- 

c dt I% - (T - 1) qJ q drz 

system (1.1) can be transformed into the form 

We shall define the non-dimensional radius R, of the shock wave by the 

formula 

( 

1 

R, = r2 / r0 r” = (E, ,; pl); 1 

where r" is a characteristic dynamic length. 

In order to obtain the complete solution of the problem in the adopted 

variables, it is necessary to determine f(A, q), g(X, q), h(X, q) and also 

of R,(q). For this it is necessary to find a solution of system (1.6) in 

the A, q plane inside the square O< h < 1 and 0 < q < 1 which satisfies 

the following boundary conditions: 

at the shock 
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f(l? q) = g(l, q) = h(1, d = 1 for h=i (1 .‘i) 

at the center of symnetry 

f(% Q) = 0 for 7.x0 (l-8) 

and the initial conditions 

f (A, 0) = f, P). 5’ (i*, 0) = g()().), h (h, 0) = h, (i:) for ‘l=o (1.9) 

where fob), g,(A), h (xl are known functions corresponding to the self- 
similar problem [ 1,2 f. They satisfy the system 

(1.20) 

in addition 

g,(l) = h,(l) = 1, f,(O) = 0 (1.11) 

Here, as also in all that follows, primes will denote differentiation 
with respect to A. We note that system (1.10) can be obtained frcm (1.6) 

by passing to the limit as q + 0. 

For small values of q, i.e. for small values of the time, when the 
explosion is still sufficiently strong, the solution of the problem set 
down above can be sought in the form 

f (A, q) = f,(i) + Qfl 0.) + * . * 

e(h 4) =g,(x; + 4thPJ-k * s* 
Rz dq 
- - = 1 + gl;+ 
q d& 1 . . . 

It (k, q) = h, (h)S Qhl 0.) + . . . (1.12) 

Recause a linearized problem is to be solved, then from (1.61, taking 
into account system (1.10) and neglecting terms of order q2 and higher, 
we obtain the following system of linear equations for determining the 
functions fI (x), g, (x), h, (x) and the constant A, : 
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From conditions (1.7), (1.8), taking into account (1.11) and (l.l2),we. 

obtain boundary conditions for the sought for functions fl(x), g,(h) and 

h,(h): 

h(l)=-_+’ g, (1) = b (1) = fl(0) = 0 (1.14) 

System (1.13) can be transformed into a form that is more convenient 

for the investigations which follow. With this aim we shall introduce new 

unknown functions F(X), C(A) and H(h) which are connected to the functions 

fl(h), g,(X) and hi(X) by the relations 

fi(h) = !jO--)F, gi (A) = .&, h,(h)= h,H (1.15) 

After the transformation,system (1.3) is written thus: 

(1.16) 

+(7$-.1)2g, 
2(7-l) ‘0’ H _j_ 

(fo - A) F’ + (to - A) G’ + (fo’ - 1) F + (F + +) (f, -A)F+ 

+(2+ loifo'+v-~!G+(i,--)~ G-- =6 (1.17) 
T---1 

7 (f, - A) F’ + (lo - 1.) H’ + (to’ - 1) TF i- (fo - A) (+ + 7 +) F + 

+ (IO - 1.) ++r (to' + +~o)H-~[~ -A,)=0 (1.18) 

From the two latter equations of this system it is possible to obtain 

a first integral. Let us show this. 

2. An integral of system (1.16)-(1.18) and a law of shock 
wave motion. If the quantities gO'/go and h,‘/h, be eliminated from 

equations (1.17) and (1.18), then we will have 

(f,--)(F’+G’)+(w-v)F+vG-s=O 

~~o-h)(yF’fH’)-v(~-l)F+vH-v(~ -A,)-=0 
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Replacing the independent variable according to the formula 

1 

\ 

dA 

p = j, f. - i. 

we obtain 

~(F+G)+(",--)F_I~G-~~=o 

~(7F$H)--v(7--1)F+vH--~~ --A,)=0 

Multiplying now the first equation by v(2y- l)/(o- 2~) adding to the 

relation so obtained the second equation and integrating the result, we 

find 

v(27---1) E o-2v + Y]F -t v~2~~v1)G+~=Cl~~~(-.ICL)+~~~~+y~-~l 

From the boundary conditions 

F(1) = y+I. G(1) = 0, H(1) = 0, P(1) = 0 

we find the constant of integration 

G 
1 
= (3:1--l)(r+1) +A 

2Y t-f---i) 
1 

If we make use of the adiabatic equation for the self-similar motions 

and if we take into account that p = 0, g, = 1, ho= 1 for h = &then we 

obtain 

e-K = (/2.,/g;)&+ 

l'hus, a first integral of system (l.M)-(1.18) is found which satis- 

fies the boundary conditions at the shock wave: 

V(2Y--1) 
CO - 2v +++ 

v(2y-1) G+H= 
0 - 2v 

” 

= (37--1uY+l)L~ I yw-v ho IF) 2v 2y-1 

2Y (r-11) l 

Y-l A 

gs 

+---..- -- 
r-lo-2v + 

2Y 
1 (2.1) 

l'he existence of an integral analogous to (2.1) was proved by Lidov 

[61. 

With the help of the obtained integral (2.1) the problem reduces to 

the solution of a system of two linear equations, which for arbitrary 

values of o can be found by numerical integration. 
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After finding the quantities A, the dependence of R*(q) and r(q) can 

be found, where R, = r2/r-’ and T = t/to. Here r" is a dynamic length, 

introduced earlier, and to is a dynamic time defined by the formula 

to = &,]*rl% r~-~Pp,-(v+z)/zv 

It is known [l 1 that for the self-similar solution we have 

r’2 (t) = (gyt,, c2 :: 62r,2t-2 II 2 
OS- 

v+z--w 
(2.2) 

where a(y, o) is a known quantity. 

If equations (2.2) be transformed to the introduced non-dimensional 

parameters, then the dependence of R,(q) and r(q) can be found in the 

self-similar problem: 

(2.3) 

For the linearized problem of (l.l2),by integrating and taking into 

account (2.3),we obtain 

H,'(q) = +$qexp(Aq) (2.4) 

Let us find r(q). Using the definitions of q, T, R,, it is easy to 

show that 

d& yRzm “8 -=- 
dr ( ) Q 

Since cfr/dq = (oBR,/dq)(dr//wz), taking into account (2.4) we find 

2--o 2--v--o 

$- = (.$-I”( $I*)-'(1 + Alq) g”’ exp (q A,q) 

For small values of q it is possible to write 

(1 + A,q)exp (G&q) = 1 + 2v+i-0 A,g 

Thus, for the determination of r (q) we obtain the differential equa- 

tion 

Integrating this equation and determining the constant of integration 
from the condition I (0) = 0,we find the required dependence 

s--v8 

q+ [Yb + 2 ;;6;21j 4 q] (2.5) 
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Relations (2.4) and (2.5) give in parametric form the law of the shock 
wave motion, i.e. the dependence of R, (r ). 

Using (2.4) and (2.5) and the conditions at the shock wave (1.21, it 
is possible to determine the dependence of all characteristics of the 
shock wave front from its radius and the time. 

3. Exact solution of the problem for o = ol. It was shown 
earlier that the solution of the linearized problem of an explosion in a 
medium with variable density can always be obtained by numerical inte- 
gration of system (1.X)-(1.18). However, in the case for which 

~)=ol= 3v--2d2-4 

Y-i-1 

the solution of this proMem can be given in the form of closed formulas. 
This can be explained since for this value of w the self-similar solution 
has the simple form 

j,(h) = +, g,(h) = A”-2, ho (A) = )\V (3.1) 

Substituting f (h 1, go(h), h,(X) from (3.1) into the coefficients of 
equations (1.16)-P 1.181, we find a system of three ordinary non-homogeneous 
equations with coefficients which depend on the parameters y and v. 

This system is a system of equations with constant coefficients, if we 
take 1 = In h as the independent variable. 

For the s.olution of system (3.21, it would be possible to use integral 
(2.1) which for o = o1 has the form: 

1 ‘=&)+y]F +v~$G+&= 

v(Y+l) (3.3) 

But because the complete system (3.2) is easily integrated, one need 
not use the integral (3.31. Bouever, it can be useful in computing the 
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dependence of the required functions on X and also as a check on the 

calculation. 

We shall find the general solution of the homogeneous system of equa- 

tions (3.2). The auxiliary equation of the system (3.2) is written thus: 

2(v+l) 2V 
n- 

Y--l Y---l 
&(n+vI 

n +2(v- 1) 
v(y+i) n--y--l 0 = 0 

v 4 v (Y + 1) 0 
v(y+l) 

n---F 
Y--l 

(3.4) 

To each root n; of equation (3.4) there corresponds a solution 

exp (ni2) = hni of the homogeneous system. 

The first root of equation (3.4) is equal to 

%=v(r-+l)/(r--) (3.5) 

The second and third roots of equation (3.4) satisfy the following 

quadratic equation: 

n2 + 
5vy + 3v + i 

Y + I- 
n_ 2v(y+r+-l)G-r) _ () 

fJ.-- 1 

and are equal to 

n,=++ 

where 
b _ 5v7 + 3v + 2 

b, = 
rzv (VT + 1) (3 - 7) 

1 r+l ’ 72 - 1 

From (3.6) it is seen that n2 = 0 for 

roots n 1’ *2 
and nj on v and y are given 

'Ibe general solution of a homogeneous 

(3.2) can be represented in the form 

(3.6) 

y = 3. ‘Ihe dependence of the 

in the Table. 

system corresponding to system 

F (A) = c,h% $ q&n: 

G(h) = clA’nl + - (h+2v-22)(7---l) chn2+ (n3+2v--22)(7--l) ch% (37) 

(Tfl)v-_(7-l)nz 2 (7+l)v-((r---1)ns 3 . 

'Ihe particular solution of the non-homogeneous system of equations 

(3.2) will thus be 

F ==al, G = a2, H = a3 (3.8) 



4. 

If ci 

(3.11 

al+ cz + - = 2 0 
-l--1 

(3.11) 

% + Cl-+ 
(%+2v--2)(y--1) 

v (7 + 1) - (r - 1J.Q 
c3 = 0 (3.12) 

a, + r--1 cl+ 
(-p? + v-f fv) (y- 1) 

27 Y (7 + 1) - (r - 1) n2 c2 = O 
(3.13) 

Results of calculations according to formulas of the exact solution. 

from (3. 12) is substituted into equation (3.13) and then equations 

1 and (3.9) are used, we obtain a relation for determining Ai. The 

quantity Ai will depend on y and v. 

After determining Ai from the system of equations (3.9). (3. ll), (3.12). 

we find the dependence on y and v of the quantities aI, a*, a3, cl, c2. 

The calculation formulas for finding the indicated quantities have the 

form 

v(r+ 1) A 
Otl = 2(r---1) (YT+l) I’ Qa=v~4+T+, (3.9) 

a =_!_ r---I 
3 

C 

q---+f 

2 T v-l + 1 
Al 

3 

Using (3.7) and (3.8) we find the solution of system (1.13) for w= oI 

in the following form 
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where a1, a*, a 3 are expressed in terms of A,, v ana1 y according to the 

formulas 

fl (A) = 2 h [a, + C,hn~ + CQhQ, ] 

g, (A) = A”-2 [ a2 + clhnl + ;;;‘,;; I::“, ‘n’, C&n’ + (3.20) 

+ (Q+2v--2)(7--2) c)% 
v(y + I)---_(r- 1) k 

3’ 
3 

h, (A) = Xv 
II 

a3 + A$- clhnl + 
CT% + VT + VI (r - 1) @An* + 

v(r+l)-((r--I)h 

+ (vn +vy + VI (T - 1) Cyhn, 

v(r+l)-((r--l1)n3 1 
We shall determine the constants c , c2, c3 and A, so that the func- 

tions fl(h), g,(h), hi(X) satisfy the boundary conditions (1.14). 

Thus, from the latter equation of (1.14) (the velocity at the center 

must be equal to zero), taking into consideration that n7.for arbitrary 

y is a negative quantity whose modulus is greater than unrty, we obtain 

C - 0; from the other equations of (1.14) we obtain a system of non- 

hggeneous linear equations with coefficients which depend on y and v. 
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BP, 1 v-l 2 
AI=B~’ u, zzz ~ &Al, 

r-1 
22 = - 

“7 + 1 Al + - 
T-1 

g&+-B& 
2 

c.2 = i_1- Ul, c1=-[Q+(y---1)~,c,l 

where 
B, = 

112 + 2v - 2 
B2 = 

7112 + VT + v 

v (y $ I)-(r-1) nt ’ v (r + 1) -_(y--l)Q 

v(r+l) 
B3- 2(vy+1) ’ 

B4= VT-V-i-2 ~_ - 
2(v+1) 

TABLE 1. 

” 1 Y 1 ~1 1 n, / n, 1 -“, ( II 1 02 ( -1s / -c, ) cz 1 Al 

1.2 2.636433.0001 5.9131 19.095 7.0942 10.8600.4756 II.923 2.9058 1.9778 
1.4 2.333318.000 3.1540 16.4873.24615.72130.4342 6.5665 1.i5401.8755 

3 513 2.ooon 12.000 1.7684 15.2681.8’113.60700.4070 4.2ili 1.17891.8211 
3.0 1.0000 6.000 0.0000 14.0000.53331.35560.3778 1.666i 0.466Tl.77i8 
7.0 0.0000 4.000 -0.8031 33.6970.16350.49680.3887 0.6098 0.16991.7979 

1.2 1.8182 22.000 4,1894 13.2806.695110.6090.6470 13.228 3.3049 2.0694 
1.4 1.666712.000 2.2240 11.3913.15205.52530.5926 6.3X38 i .8481 1.9962 

2 6/S 1.5000 fj.000 1.2394 10.4891.77153.44290.5381 4.0315 1.2285 1.9191 
3.0 1.0000 4.000 0.0000 9.5000.52381.26190.4524 1.5000 0.47621.8333 
7.0 0.5000 2.667 -0.5431 9.2070.16210.45490.4225 0.5326 0.171:!1.8237 

The results of the calculations are presented in the table. 

The formulas (3.10) taking into account that c3 = 0 are written thus: 

/I (A) = 3 h (a1 + c2hn*) 

g,(~)= AVp2[a2 t- c,A~‘ + (r -.I) B1cdn’ I (4.1) 

From the relation (0.3) in the case of spherical Waves (v = 3). 

cylindrical waves (v = 2) and plane waves (Y = 1) we will have respect- 

ively 
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The formula for finding the mass of matter enclosed in some finite 

region containing the origin of the coordinate system 
r 

m = a, 
5 

pr”“’ dr 

0 

shows that the initial mass will be of finite magnitude only in the 

spherical and cylindrical cases. Therefore, the calculations were carried 

out for these two cases. 

The integral (3.3) in the case of spherical symmetry takes the form 

(7-3)(7---If ~_-3~7--~)(7+i)G+H_ 
iy--1 7y--1 

3 (U-tl) 

(37-i) (r-+-i) + A, iv--1 
27 (7 - i) 1 

and in the cylindrical case 

2 cueI, 

(31-1)(-t+-1) r-i’;:_(2y--1)(r+1)G+H= + A, h y--l -j- 

27 27 27(7--i) 1 

The dependence of R2fq) and r(q) is found from the relations (2.4) and 
(2.5) in which it is necessary to set 6 = a,, where 

61 -= 8 (0,) 1: 7+1 
“7 - v f 2 

Using the calculated constants and formulas (4.1). the dependence of 

f,(X), g,(x) and hl(,4\) (Figs. 1,2,3 respectively) were constructed for 

various values of y and V. With the help of the functions f,(h), gl(Al 

and h%(h), and knowing the constant Al, it is possible to calculate the 

characteristics of the motion for small values of q. 

Fig. 1. 

6 

In Figs. 4a and 4b the distribution of the non-dimensional pressure 

h = h,, + qhl is given in the spherical case for y = 1.4 and y = 7 and in 
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the cylindrical case for y = 1.4 for the values q = 0 and q = O-2. 

0 O$9 A 0 Q 

Fig. 2. 

a 6 

Fig. 3. 

These graphs show the influence of back pressure on the development of 

an explosion in the initial stage. 

If the values for w1 found for v = 3 and v = 2 are equated, then we 

obtain y = 3. In this case C+ = 1. A comparison of the values of the non- 

dimensional pressure for y = 3, o1 = 1 and various V(U = 3, v = 2) is 
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given in Fig. 5. 

I.0 
h y31.4 

OJ 

;r a,6 68 t.G 

a 

Fig. 4. 

y=7 

66 

b 

We note in conclusion that the exact solution for CO= o1 in the parti- 

cular case v = 3 obtained in the present paper supplements and makes more 

precise the results of [ 7 1 (see also 18 1 ). 

Fig. 5. 

The author sincerely thanks N.S. Mel’nikov for discussing certain 

questions which are examined in the present paper. 
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